Semin 2014-2015

MID TERM EXAMINATIONS - 2015

B.Sc PART - I COMPUTER SCIENCE - HONOURS

BANGABASI COLLEGE

Time: 2 Hrs Full Marks: 50

Instructions:

Figures in the margins indicate full marks.

Answer <u>Ouestion 1</u> and any <u>five</u> from the rest.

Question 1: Answer any five questions:

 $2 \times 5 = 10$

- a. What is Operating System?
- b. What are the functions of Long term scheduler and Short term scheduler?
- c. Show that dual of X-OR is equal to its complement. Prove or disprove whether the same is true for X-NOR.
- d. Convert (5234)8 to its equivalent hexadecimal value
- e. If $A \oplus B = C$ then justify which of this true:
 - i) B ⊕ C
 - ii) C.A B
 - iii) CA'B' = B
 - iv) None of the above
- f. Implement the function with only AND & NOT gates:

$$F = xy + x'y' + y'z$$

- g. Prove that x(y+z)=xy+yz
- State the purpose of any four symbols in a flowchart.
- i. What is a variable? Give examples.
- j. What are relational operators?

Question 2:

4 + 4 = 8

a. Assume that the following jobs are to be executed on a single processor system:

bl-dol.	CPU-BurstTime	
p	4	
q	1	
r	8	
S	1	
1	2	

The jobs are assumed to have arrived at time 0 and in the order p, q, r, s, t. Calculate the waiting time for job p if scheduling is Round Robin (RR) with time slice 1.

b. A majority gate is a digital circuit whose output is equal to 1 if the majority of the inputs are 1's. The output is 0 otherwise. By means of a truth table, find the Boolean function implemented by a 3-input majority gate. Simplify the function.

Question 3: (2+2)+4=8

- a. What is an algorithm? What are the properties that a good algorithm should have?
- Consider the following set of processes, with the arrival times and the CPU burst times given in milliseconds.

Process	Arrival-Time	Burst-Time
ΡI	0	5
P2	1	3
P3	2	3
P4	4	1

What is the average turnaround time for these processes with the pre-emptive shortest job first (SJF) algorithm?

Question 4: 4 + (1 + 1 + 1 + 1) = 8

- a. Design a combinational circuit with three inputs and one output. The output is 1 when the binary value of the inputs is less than 3.Otherwise the output is 0.
- b. Given that x = 15, y = 20 and z = 25. What does the following expressions evaluate to (True or False)?
 - i. (x > 0) AND (y < 20)
 - ii. (x = 15) OR (y = 15)
 - iii. NOT (z < 100)
 - iv. (∠ y)!=(∠-x)

Question 5: 3 + 5 = 8

- a. Draw a flowchart to test whether a number is odd or even.
- b. Write an algorithm to find the H.C.F of two numbers given as input.

Question 6: 2 + (2 + 2) + 2 = 8

- a. Reduce the Boolean Expression to the 4 Numbers of literals (A+C+D)(A+C+D*)(A+C*+D)(A+B*)
- Express the function in a sum of minterms and product of maxterms
 F(x,y,z)=(xy+z)(y+xz)
- c. Implement the Boolean Function with Ex-OR and AND Gates F = AB*CD*+A*BCD*+AB*C*D+A*BC*D

Question 7: 2 + 2 + 4 = 8

a. Implement the function with only AND & NOT gates:

$$F = xy + x'y' + y'z$$

- b. Prove that x(y+z)=xy+yz.
- c. Design a combinational circuit with four input lines that represent a decimal digit in 2421 code and four output lines that generates the 9's complement of the input digit.

Question 8:

$$2+2+(2+2)=8$$

- a. $(234.369)_{10} = (?)_2$
- b. State De- Morgan's Theorem.
- What do you understand by universal gates? Show that NAND Gate is a Universal Gate.

Question 9:

$$(2+2)+4=8$$

a. Simplify:

$$F=W'(X'Y+X'Y'+XYZ)+X'Z'(Y+W)$$

 $D=W'X(Y'Z+YZ')+WYZ$

 Explain the differences between entry controlled loops and exit controlled loops with the aid of diagrams and examples.